Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2123545

ABSTRACT

Background: The aim of this study was to explore the predictive values of quantitative CT indices of the total lung and lung lobe tissue at discharge for the pulmonary diffusion function of coronavirus disease 2019 (COVID-19) patients at 5 months after symptom onset. Methods: A total of 90 patients with moderate and severe COVID-19 underwent CT scans at discharge, and pulmonary function tests (PFTs) were performed 5 months after symptom onset. The differences in quantitative CT and PFT results between Group 1 (patients with abnormal diffusion function) and Group 2 (patients with normal diffusion function) were compared by the chi-square test, Fisher's exact test or Mann−Whitney U test. Univariate analysis, stepwise linear regression and logistic regression were used to determine the predictors of diffusion function in convalescent patients. Results: A total of 37.80% (34/90) of patients presented diffusion dysfunction at 5 months after symptom onset. The mean lung density (MLD) of the total lung tissue in Group 1 was higher than that in Group 2, and the percentage of the well-aerated lung (WAL) tissue volume (WAL%) of Group 1 was lower than that of Group 2 (all p < 0.05). Multiple stepwise linear regression identified only WAL and WAL% of the left upper lobe (LUL) as parameters that positively correlated with the percent of the predicted value of diffusion capacity of the lungs for carbon monoxide (WAL: p = 0.002; WAL%: p = 0.004), and multiple stepwise logistic regression identified MLD and MLDLUL as independent predictors of diffusion dysfunction (MLD: OR (95%CI): 1.011 (1.001, 1.02), p = 0.035; MLDLUL: OR (95%CI): 1.016 (1.004, 1.027), p = 0.008). Conclusion: At five months after symptom onset, more than one-third of moderate and severe COVID-19 patients presented with diffusion dysfunction. The well-aerated lung and mean lung density quantified by CT at discharge could be predictors of diffusion function in convalesce.

2.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1480621

ABSTRACT

OBJECTIVE: To provide the quantitative volumetric data of the total lung and lobes in inspiration and expiration from healthy adults, and to explore the value of paired inspiratory-expiratory chest CT scan in pulmonary ventilatory function and further explore the influence of each lobe on ventilation. METHODS: A total of 65 adults (29 males and 36 females) with normal clinical pulmonary function test (PFT) and paired inspiratory-expiratory chest CT scan were retrospectively enrolled. The inspiratory and expiratory volumetric indexes of the total lung (TL) and 5 lobes (left upper lobe [LUL], left lower lobe [LLL], right upper lobe [RUL], right middle lobe [RML], and right lower lobe [RLL]) were obtained by Philips IntelliSpace Portal image postprocessing workstation, including inspiratory lung volume (LVin), expiratory lung volume (LVex), volume change (∆LV), and well-aerated lung volume (WAL, lung tissue with CT threshold between -950 and -750 HU in inspiratory scan). Spearman correlation analysis was used to explore the correlation between CT quantitative indexes of the total lung and ventilatory function indexes (including total lung capacity [TLC], residual volume [RV], and force vital capacity [FVC]). Multiple stepwise regression analysis was used to explore the influence of each lobe on ventilation. RESULTS: At end-inspiratory phase, the LVin-TL was 4664.6 (4282.7, 5916.2) mL, the WALTL was 4173 (3639.6, 5250.9) mL; both showed excellent correlation with TLC (LVin-TL: r = 0.890, p < 0.001; WALTL: r = 0.879, p < 0.001). From multiple linear regression analysis with lobar CT indexes as variables, the LVin and WAL of these two lobes, LLL and RUL, showed a significant relationship with TLC. At end-expiratory phase, the LVex-TL was 2325.2 (1969.7, 2722.5) mL with good correlation with RV (r = 0.811, p < 0.001), of which the LVex of RUL and RML had a significant relationship with RV. For the volumetric change within breathing, the ∆LVTL was 2485.6 (2169.8, 3078.1) mL with good correlation with FVC (r = 0.719, p < 0.001), moreover, WALTL showed a better correlation with FVC (r = 0.817, p < 0.001) than that of ∆LVTL. Likewise, there was also a strong association between ∆LV, WAL of these two lobes (LLL and RUL), and FVC. CONCLUSIONS: The quantitative indexes derived from paired inspiratory-expiratory chest CT could reflect the clinical pulmonary ventilatory function, LLL, and RUL give greater impact on ventilation. Thus, the pulmonary functional evaluation needs to be more precise and not limited to the total lung level.

3.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1444131

ABSTRACT

BACKGROUND: In this study, our focus was on pulmonary sequelae of coronavirus disease 2019 (COVID-19). We aimed to develop and validate CT-based radiomic models for predicting the presence of residual lung lesions in COVID-19 survivors at three months after discharge. METHODS: We retrospectively enrolled 162 COVID-19 confirmed patients in our hospital (84 patients with residual lung lesions and 78 patients without residual lung lesions, at three months after discharge). The patients were all randomly allocated to a training set (n = 114) or a test set (n = 48). Radiomic features were extracted from chest CT images in different regions (entire lung or lesion) and at different time points (at hospital admission or at discharge) to build different models, sequentially, or in combination, as follows: (1) Lesion_A model (based on the lesion region at admission CT); (2) Lesion_D model (based on the lesion region at discharge CT); (3) Δlesion model (based on the lesion region at admission CT and discharge CT); (4) Lung_A model (based on the lung region at admission CT); (5) Lung_D model (based on the lung region at discharge CT); (6) Δlung model (based on the lung region at admission CT and discharge CT). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the predictive performances of the radiomic models. RESULTS: Among the six models, the Lesion_D and the Δlesion models achieved better predictive efficacy, with AUCs of 0.907 and 0.927, sensitivity of 0.898 and 0.763, and specificity of 0.855 and 0.964 in the training set, and AUCs of 0.875 and 0.837, sensitivity of 0.920 and 0.680, and specificity of 0.826 and 0.913 in the test set, respectively. CONCLUSIONS: The CT-based radiomic models showed good predictive effects on the presence of residual lung lesions in COVID-19 survivors at three months after discharge, which may help doctors to plan follow-up work and to reduce the psychological burden of COVID-19 survivors.

4.
Front Med (Lausanne) ; 8: 682087, 2021.
Article in English | MEDLINE | ID: covidwho-1305655

ABSTRACT

Background and Objectives: To investigate whether coronavirus disease 2019 (COVID-19) survivors who had different disease severities have different levels of pulmonary sequelae at 3 months post-discharge. Methods: COVID-19 patients discharged from four hospitals 3 months previously, recovered asymptomatic patients from an isolation hotel, and uninfected healthy controls (HCs) from the community were prospectively recruited. Participants were recruited at Wuhan Union Hospital and underwent examinations, including quality-of-life evaluation (St. George Respiratory Questionnaire [SGRQ]), laboratory examination, chest computed tomography (CT) imaging, and pulmonary function tests. Results: A total of 216 participants were recruited, including 95 patients who had recovered from severe/critical COVID-19 (SPs), 51 who had recovered from mild/moderate disease (MPs), 28 who had recovered from asymptomatic disease (APs), and 42 HCs. In total, 154 out of 174 (88.5%) recovered COVID-19 patients tested positive for serum SARS-COV-2 IgG, but only 19 (10.9%) were still positive for IgM. The SGRQ scores were highest in the SPs, while APs had slightly higher SGRQ scores than those of HCs; 85.1% of SPs and 68.0% of MPs still had residual CT abnormalities, mainly ground-glass opacity (GGO) followed by strip-like fibrosis at 3 months after discharge, but the pneumonic lesions were largely absorbed in the recovered SPs or MPs relative to findings in the acute phase. Pulmonary function showed that the frequency of lung diffusion capacity for carbon monoxide abnormalities were comparable in SPs and MPs (47.1 vs. 41.7%), while abnormal total lung capacity (TLC) and residual volume (RV) were more frequent in SPs than in MPs (TLC, 18.8 vs. 8.3%; RV, 11.8 vs. 0%). Conclusions: Pulmonary abnormalities remained after recovery from COVID-19 and were more frequent and conspicuous in SPs at 3 months after discharge.

SELECTION OF CITATIONS
SEARCH DETAIL